Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord.
نویسندگان
چکیده
The administration of growth factors (GFs) for treatment of experimental spinal cord injury (SCI) has shown limited benefits. One reason may be the mode of delivery to the injury site. We have developed a minimally invasive and safe drug delivery system (DDS) consisting of a highly concentrated collagen solution that can be injected intrathecally at the site of injury providing localized delivery of GFs. Using the injectable DDS, epidermal growth factor (EGF) and basic fibroblast growth factor (FGF-2) were co-delivered in the subarachnoid space of Sprague-Dawley rats. The in vivo distribution of EGF and FGF-2 in both injured and uninjured animals was monitored by immunohistochemistry. Although significant differences in the distribution of EGF and FGF-2 in the spinal cord were evident, localized delivery of the GFs resulted in significantly less cavitation at the lesion epicenter and for at least 720 mum caudal to it compared to control animals without the DDS. There was also significantly more white matter sparing at the lesion epicenter in animals receiving the GFs compared to control animals. Moreover, at 14 days post-injection, delivery of the GFs resulted in significantly greater ependymal cell proliferation in the central canal immediately rostral and caudal to the lesion edge compared to controls. These results demonstrate that the injectable DDS provides a new paradigm for localized delivery of bioactive therapeutic agents to the injured spinal cord.
منابع مشابه
Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord.
Strategies for spinal cord injury repair are limited, in part, by poor drug delivery techniques. A novel drug delivery system (DDS) is being developed in our laboratory that can provide localized release of growth factors from an injectable gel. The gel must be fast-gelling, non-cell adhesive, degradable, and biocompatible as an injectable intrathecal DDS. A gel that meets these design criteria...
متن کاملSustained delivery of bioactive neurotrophin-3 to the injured spinal cord.
Spinal cord injury is a debilitating condition that currently lacks effective clinical treatment. Neurotrophin-3 (NT-3) has been demonstrated in experimental animal models to induce axonal regeneration and functional improvements, yet its local delivery remains challenging. For ultimate clinical translation, a drug delivery system is required for localized, sustained, and minimally invasive rel...
متن کاملIntrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats
Background: Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in consciou...
متن کاملPoly(ethylene glycol) modification enhances penetration of fibroblast growth factor 2 to injured spinal cord tissue from an intrathecal delivery system.
There is no effective treatment for spinal cord injury and clinical drug delivery techniques are limited by the blood-spinal cord barrier. Our lab has developed an injectable drug delivery system consisting of a biopolymer blend of hyaluronan and methylcellulose (HAMC) that can sustain drug release for up to 24h in the intrathecal space. Fibroblast growth factor 2 (FGF2) has great potential for...
متن کاملLocalized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury.
After traumatic spinal cord injury, grossly injured blood vessels leak blood and fluid into the parenchyma, leading to a large cystic cavity. Fibroblast growth factor-2 (FGF2) can reduce immediate vasoconstriction of vessels in the tissue surrounding the primary injury and promote angiogenesis. A localized delivery system would both achieve restricted delivery of FGF2 to the spinal cord and lim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 194 1 شماره
صفحات -
تاریخ انتشار 2005